The role of "extraordinary" monetary policy shocks XXIII Yasin International Academic Conference on Economic and Social Development

> Sergei Seleznev¹ Alexander Tishin¹ seleznevsm@mail.cbr.ru tishinav@mail.cbr.ru

> > ¹Bank of Russia

April 6, 2022

The views expressed in this paper are those of the authors and do not necessarily represent the position of the Bank of Russia.

Motivation

- Assessing the effectiveness of monetary policy is essential
- I How do research help policymakers estimate the transmission?
- Large heterogeneity of the transmission estimates:
- (Semi-)Structural models (QPM and DSGE) correspond to the theory
- Solution VAR models lead to a price puzzle
- Recent papers use high-frequency data to identify monetary policy surprises (Gertler & Karadi, 2015; Jarociński & Karadi, 2020)
 - Successful for Advanced Economies and resolve a price puzzle emerged in the previous papers
- Still observe a price puzzle in Russian data (Bannikova & Pestova, 2021; Tishin, 2019)

Stylized facts

- Monetary policy transmission from the policymaker's perspective:
- По оценкам Банка России, в целом для того, чтобы импульс от изменения ключевой ставки в полной мере транслировался в динамику инфляции, требуется до 3–6 кварталов.
- Quarterly Projection Model (in levels):

(a) Orlov, 2021

DSGE models

• In growth rates

(a) Kreptsev and Seleznev, 2017 (b) Kreptsev and Seleznev, 2016

The role of "extraordinary" monetary policy shocks

Empirical estimates (high-frequency identification)

Both papers use models similar to Gertler and Karadi, 2015

(b) Bannikova and Pestova, 2021

Monetary policy surprises (HFI - USD/RUB futures)

This paper

What is the role of "extreme" shocks in data?

- Shows that "extreme" monetary policy shocks may shape the form of CPI responses
- Other "extreme" shocks (i.e. oil prices) are less likely to significantly influence responses
- Uses monthly DSGE model of Russian economy (extended Kreptsev and Seleznev, 2017)
 - Monthly dynamics
 - Correlation between shocks
 - Simulate the economy and add "extreme" shocks in simulation
- Evaluate the distribution of high-frequency monetary policy shocks
 - Heavy distribution tails
 - Probably problems with LLN
 - $\rightarrow\,$ Asymptotic does not work?
 - \rightarrow Inference?

How model works

S. Seleznev, A. Tishin (BoR)

The role of "extraordinary" monetary policy shocks

Experiments

- We use a DSGE model as a workhorse in our simulations
- We do not pretend that it best describes the Russian economy

We compare

Theoretical responses: according DSGE model

Empirical responses: according SVAR model

Experiment: Artificial simulation

S. Seleznev, A. Tishin (BoR)

The role of "extraordinary" monetary policy shocks

"Artificial" simulation

Experiment: Simulate only monetary policy shock

S. Seleznev, A. Tishin (BoR)

The role of "extraordinary" monetary policy shocks

Real shocks with replaced simulated monetary policy shock

10

-5

Experiment: Add peaked monetary policy shock in December, 2014

S. Seleznev, A. Tishin (BoR)

The role of "extraordinary" monetary policy shocks

Real shocks with replaced simulated peaked monetary policy shock

GDP

Experiment: Limit real shocks to 2014m12-2015m12

S. Seleznev, A. Tishin (BoR)

he role of "extraordinary" monetary policy shocks

Real shocks for 2014m12-2015m12 with replaced simulated peaked monetary policy shock

Experiment: Add peaked monetary policy shock in December, 2014

S. Seleznev, A. Tishin (BoR)

The role of "extraordinary" monetary policy shocks

April 6, 2022

18/26

Real shocks for 2014m12-2015m12 with replaced simulated peaked monetary policy shock

GDP

How well do we simulate the shocks?

Shocks and distributions

- Does the distribution of shocks matter?
- Any inference problems?

• Let's look how monetary policy shock behaves in our simulation exercise

- Let's check using high-frequency data:
- Monetary policy surprises in 30-minutes window around policy announcement

Mean simulated monetary policy shock

 $df\approx 5$

Mean peaked monetary policy shock

 $df\approx 2\,$

High-frequency identification - 1

 $df\approx 0.84\,$

Results

- Indeed, a price puzzle may be caused by peaked monetary policy surprises
- Other shocks, even "extreme" (e.g. oil prices), have less impact on the transmission of monetary policy
- Policy recommendation: pay attention to unusual shocks which may bias the results
- Need to assess the distribution of monetary policy surprises
- Different ways how to attribute surprises to months should be examined

Thank you for your attention!

The role of "extraordinary" monetary policy shocks

Sergei Seleznev¹ Alexander Tishin¹

seleznevsm@mail.cbr.ru tishinav@mail.cbr.ru

¹Bank of Russia

April 6, 2022

Bibliography I

Bannikova, V., & Pestova, A. (2021). The effects of monetary shocks on inflation: High-frequency approach. *Voprosy* economiki, (6), 47–76.

- Gertler, M., & Karadi, P. (2015). Monetary policy surprises, credit costs, and economic activity. *American Economic Journal: Macroeconomics*, 7(1), 44–76.
- Jarociński, M., & Karadi, P. (2020). Deconstructing monetary policy surprises—the role of information shocks. *American Economic Journal: Macroeconomics*, 12(2), 1–43.
- Kreptsev, D., & Seleznev, S. (2016). Dsge models of the russian economy with a small number of equations. Series of reports on Economic Research No. 12, Bank of Russia.
- Kreptsev, D., & Seleznev, S. (2017). Dsge model of the russian economy with the banking sector. Series of reports on Economic Research No. 27, Bank of Russia.
- Orlov, A. (2021). Quarterly forecast model of russia.
- Tishin, A. (2019). Monetary policy surprises in russia. Russian Journal of Money and Finance, 78(4), 48–70.